Math, asked by labhsuyash, 11 months ago

if alpha and beta are the zeroes of polynomial f(x)=4x^2-5x+1 find a quadratic polynomial whose zeroes are alpha^2/beta and beta^2/alpha

Answers

Answered by rishu6845
32

Answer:

\boxed{\huge{\pink{16 {x}^{2}  - 65x + 4}}}

Step-by-step explanation:

\bold{\green{Given}}\longrightarrow \\  \alpha  \: and \:  \beta  \: are \: zeroes \: of \: polynomial \\ f(x) = 4 {x}^{2}  - 5x + 1

\bold{\red{To \: find}}\longrightarrow \\ a \: quadratic \: polynomial \: whose \: zeroes \: are \:   \\ \dfrac{ { \alpha }^{2} }{ \beta }  \: and \dfrac{ { \beta }^{2} }{ \alpha }

\bold{\blue{Concept \: used}}\longrightarrow \\ polynomial \: is \:  \\  {x}^{2}  - (sum \: of \: zeroes)x + product \: of \: zeroes

\bold{\pink{Solution}}\longrightarrow \\ f(x) = 4 {x}^{2}  - 5x + 1 \\  = 4 {x}^{2}  - (4 + 1)x + 1 \\  = 4 {x}^{2}  - 4x - x + 1 \\  = 4x(x - 1) - 1(x - 1) \\  = (x - 1) \: (4x - 1) \\ if \: x - 1 = 0 \:  \:  \:  =  > x = 1 \\ if \: 4x - 1 = 0  =  > x =  \dfrac{1}{4}  \\ so  \\  \alpha  = 1 \: and \:  \beta  =  \dfrac{1}{4}  \\  \dfrac{ { \alpha }^{2} }{ \beta }  =  \dfrac{ {(1)}^{2} }{ \dfrac{1}{4} }  \\  \dfrac{ { \alpha }^{2} }{ \beta }  = 4 \\  \dfrac{ { \beta }^{2} }{ \alpha }  =  \dfrac{( \dfrac{ {1} }{4}) ^{2}  }{1}  \\  \dfrac{ { \beta }^{2} }{ \alpha }  =  \dfrac{1}{16}  \\ now

sum \: of \: zeroes \:  =  \dfrac{ { \alpha }^{2} }{ \beta }  +  \dfrac{ { \beta }^{2} }{ \alpha }  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = 4 +  \dfrac{1}{16}  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  \dfrac{65}{16}

product \: of \: zeroes =  \dfrac{ { \alpha }^{2} }{ \beta } \:  \:  \:   \dfrac{ { \beta }^{2} }{ \alpha }  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  \alpha  \beta  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \dfrac{1}{4}

required \: polynomial \: is \\ k( {x}^{2}  - (sum \: of \: zeroes)x + product \: of \: zeroes \: ) \\  = k( {x}^{2}  - ( \dfrac{65}{16} )x +  \dfrac{1}{4} ) \\  = k(  \dfrac{16 {x}^{2}  - 65x + 4}{16} ) \\ taking \: k \:  = 16 \: we \: get \\  = 16( \dfrac{16 {x}^{2}  - 65x + 4}{16} ) \\  = \pink{16 {x}^{2}  - 65x + 4}

Similar questions