if alpha and beta are the zeroes of quadratic polynomial f(x)=xsquare-5x+4 find the value of 1/alpha+1/beta-2alpha beta
Answers
Answered by
7
We know,
![If \alpha \: \beta \: are \: the \: two \: roots \: of \: a \\ quadratic \: equation, \: then If \alpha \: \beta \: are \: the \: two \: roots \: of \: a \\ quadratic \: equation, \: then](https://tex.z-dn.net/?f=If+%5Calpha+%5C%3A+%5Cbeta+%5C%3A+are+%5C%3A+the+%5C%3A+two+%5C%3A+roots+%5C%3A+of+%5C%3A+a+%5C%5C+quadratic+%5C%3A+equation%2C+%5C%3A+then)
![{x}^{2} - (\alpha + \beta )x + \alpha \beta = 0 {x}^{2} - (\alpha + \beta )x + \alpha \beta = 0](https://tex.z-dn.net/?f=+%7Bx%7D%5E%7B2%7D+-+%28%5Calpha+%2B+%5Cbeta+%29x+%2B+%5Calpha+%5Cbeta+%3D+0)
![Here, \\ {x}^{2}-5x+4=0 Here, \\ {x}^{2}-5x+4=0](https://tex.z-dn.net/?f=+Here%2C+%5C%5C+%7Bx%7D%5E%7B2%7D-5x%2B4%3D0+)
![So here, \\ (\alpha+\beta)=5, and \\ (\alpha \beta)=4 \\<br />We \: have \: to \: find \: the \: value \: of \\ (\frac{1}{\alpha}+\frac{1}{\beta}-2 \alpha \beta) So here, \\ (\alpha+\beta)=5, and \\ (\alpha \beta)=4 \\<br />We \: have \: to \: find \: the \: value \: of \\ (\frac{1}{\alpha}+\frac{1}{\beta}-2 \alpha \beta)](https://tex.z-dn.net/?f=+So+here%2C+%5C%5C+%28%5Calpha%2B%5Cbeta%29%3D5%2C+and+%5C%5C+%28%5Calpha+%5Cbeta%29%3D4+%5C%5C%3Cbr+%2F%3EWe+%5C%3A+have+%5C%3A+to+%5C%3A+find+%5C%3A+the+%5C%3A+value+%5C%3A+of+%5C%5C+%28%5Cfrac%7B1%7D%7B%5Calpha%7D%2B%5Cfrac%7B1%7D%7B%5Cbeta%7D-2+%5Calpha+%5Cbeta%29+)
![\frac{\alpha + \beta}{\alpha \beta}-2 \alpha \beta \frac{\alpha + \beta}{\alpha \beta}-2 \alpha \beta](https://tex.z-dn.net/?f=+%5Cfrac%7B%5Calpha+%2B+%5Cbeta%7D%7B%5Calpha+%5Cbeta%7D-2+%5Calpha+%5Cbeta+)
Putting in the values, we get
Putting in the values, we get
Similar questions