Math, asked by jayamohan1824, 11 months ago

If alpha and beta are the zeroes of the equation 2x^2+10x-12=0.findnthe value of alpha ^2+beta^2 and alpha^3+beta^3

Answers

Answered by Anonymous
1

Answer:

let \:  \\  \alpha  \: and \:  \beta  \: are \: zeroes \: of \: giv en\\  \\  polynomial \\ then \\  \alpha  +  \beta  =  \frac{ - b}{a}  \\  \alpha  +  \beta  =   \frac{ - (10)}{2}  \\  \alpha  +  \beta  =  - 5 \\  \alpha  \beta  =  \frac{c}{a}  \\  \alpha  \beta   =  \frac{ - 12}{2 }  \\  \alpha  \beta  =  - 6

  { \alpha }^{2}  +  { \beta }^{2}  =  {( \alpha  +  \beta )}^{2}  - 2 \alpha  \beta  \\  { \alpha }^{2}  +  { \beta }^{2}  =  {( - 5)}^{2}  - 2( - 6) \\   { \alpha }^{2}  +  { \beta }^{2}  = 25 + 12 = 37

 {\alpha }^{3}  +  { \beta }^{3} = ( \alpha  +  \beta )( { \alpha }^{2} +  { \beta }^{2}   -  \alpha  \beta ) \\  { \alpha }^{3}  +  { \beta }^{3}  = ( - 5)(37 - ( - 6) \\  { \alpha }^{3}  +  { \beta }^{3}  = ( - 5)(37 + 6) =  - 215

hope you understand

and follow me

thanx for see my answer

Answered by Siddharta7
1

Step-by-step explanation:

Given Equation is 2x² + 10x - 12 = 0

a = 2, b = 10, c = -12.

Sum of zeroes:

α + β = -b/a

        = -10/2

        = -5

Product of zeroes = c/a

                              = -12/2

                              = -6

Now,

α² + β² = (α + β)² - 2αβ

 

            = (-5)² - 2(-6)

            = 25 + 12

            = 37

(ii)

α³ + β³ = (α + β)(α² - αβ + β²)

           = (-5)(37 + 6)

           = -215

Hope it helps!

Similar questions