Math, asked by bijuam, 2 months ago

if alpha and beta are the zeroes of the polynomial f(x) =x²-p(x-1)-c, then ( alpha +1) ( beta +1) is... answer 1- c​

Answers

Answered by mathdude500
0

Appropriate Question :-

  • if alpha and beta are the zeroes of the polynomial f(x) = x² - p(x + 1) - c, then ( alpha +1) ( beta +1) is _________

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\: \alpha,\beta \: are \: zeroes \: of \:  {x}^{2} - p(x  + 1) - c

can be rewritten as

\rm :\longmapsto\: \alpha,\beta \: are \: zeroes \: of \:  {x}^{2} - px  -  p - c

We know that

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\rm :\implies\: \alpha + \beta =  - \dfrac{( - p)}{1} = p

and

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\rm :\implies\: \alpha \beta =  \dfrac{ - p - c}{1} = -  p - c

Now, Consider

\rm :\longmapsto\:(\alpha+1)(\beta+1)

\rm \:  =  \:  \: \alpha  \beta  +  \alpha  +  \beta  + 1

\rm \:  =  \:  \: - p - c + p + 1

\rm \:  =  \:  \: 1 - c

Hence, Proved

Additional Information :-

\rm :\longmapsto\: \alpha,\beta, \gamma \: are \: zeroes \: of \: a {x}^{3} +  b {x}^{2} +  cx + d, \: then

\boxed{ \sf{ \: \alpha  +  \beta  +  \gamma   \: =  -  \: \dfrac{b}{a}}}

\boxed{ \sf{ \: \alpha \beta  +  \beta \gamma +  \gamma  \alpha    \: =    \: \dfrac{c}{a}}}

\boxed{ \sf{ \: \alpha \beta \gamma   \: =   -   \: \dfrac{d}{a}}}

Similar questions