Math, asked by priyavainavi, 10 months ago

if alpha and beta are the zeroes of the polynomial p(x)=x²-5x+6,find the value of alpha⁴beta²+alpha²beta⁴​

Answers

Answered by Sudhir1188
10

ANSWER:

  • The value of above expression = 468.

GIVEN:

  • P(x) = x²-5x+6

TO FIND:

 \alpha \: {}^{4}  \beta {}^{2}  +  \alpha {}^{2}  \beta {}^{4}

SOLUTION:

P(x) = x²-5x+6

Here;

 \implies \alpha \:  +  \beta \:  =  \frac{ - ( - 5)}{1}  \\  \\  \implies \: \alpha \:   \times   \beta =  \frac{6}{1}

Now Simplify the above expression

  = \alpha \: {}^{4}  \beta {}^{2}  +  \alpha {}^{2}  \beta {}^{4}  \\  =  \alpha {}^{2}  \beta {}^{2} ( \alpha {}^{2}  +  \beta {}^{2} ) \:  \:  \:  \: ......(i)

Now finding the value of (α² + β²)

 =  \alpha {}^{2}  +  \beta {}^{2}  \\  = ( \alpha \:  +  \beta ){}^{2}  - 2 \alpha \beta \\  \\ putting \: the \: values \: we \: get  \\  = (5) {}^{2}  - 2 \times 6 \\  = 25 - 12 \\  = 13

Now;

putting (α² + β²)= 13 in eq(i) we get:

 =(  \alpha \beta) {}^{2} (13) \\  = (6) {}^{2} \times 13 \\  = 36 \times 13 \\   = 468

The value of above expression = 468.

Similar questions