Math, asked by lovepreetsingh5877, 9 months ago

If alpha and beta are the zeroes of the polynomial x^2+x-2, find the value of (1/alpha)-(1/beta)

Answers

Answered by Sharad001
29

Answer :-

\implies   \boxed{ \frac{1}{ \alpha}  -  \frac{1}{ \beta}   =  -  \frac{3}{2} } \:

To Find :-

 \implies   \frac{1}{ \alpha}  -  \frac{1}{ \beta}  \\

Explanation :-

We have

→ x² + x - 2 = 0

 \to \boxed{ \sf{sum \: of \: root \:  =  -  \frac{ coefficient \: of \: x}{coefficient \: of \:  {x}^{2} } }} \\  \therefore \:  \\  \to \boxed{ \alpha +  \beta =  - 1} \\  \\  \:  \to  \boxed{\sf{ product \: of \: roots =  \frac{ constant}{coefficient \: of \:  {x}^{2} } }} \\  \therefore \:  \\  \to \boxed{ \alpha \:  \beta =  - 2}

Hence ,

 \leadsto \:  \frac{1}{ \alpha} -  \frac{1}{ \beta}  \\  \\  \leadsto \:  \frac{ \beta -  \alpha}{ \alpha \:  \beta}  \\  \\  \leadsto \:  \frac{ \sqrt{{( \beta +  \alpha)}^{2}  - 4 \alpha \beta}}{ \alpha \beta}  \\  \\  \leadsto \:  \frac{ \sqrt{ { ( - 1)}^{2} - 4 \times  ( - 2) } }{ - 2}  \\  \\  \leadsto \:  \frac{ \sqrt{1 + 8} }{ - 2}  \\  \\  \leadsto \:  \frac{ \sqrt{9} }{ - 2}  \\  \\  \leadsto \:  \frac{ - 3}{2}  \\  \therefore \:  \\  \\ \implies   \boxed{ \frac{1}{ \alpha}  -  \frac{1}{ \beta}   =  -  \frac{3}{2} }

Similar questions