Math, asked by 10a11suryani, 26 days ago

if alpha and beta are the zeroes of the polynomial x2+6x+2 then the balue of 1/alpha +1/beta is

Answers

Answered by Unni007
1

Given,

  • α and β are the roots of the equation x² +6x +2 = 0

Here,

  • coefficient of x² (a) = 1
  • coefficient of x (b) = 6
  • coefficient of c (c) = 2

We know,

  • \sf{\alpha+\beta=\dfrac{-b}{a}}
  • \sf{\alpha\beta=\dfrac{c}{a}}

Applying the values to the equation,

\implies \sf{\alpha+\beta=\dfrac{-6}{1} \ \ \ \ \& \ \ \ \  \alpha\beta=\dfrac{2}{1}}

\implies \sf{\alpha+\beta=-6 \ \ \ \ \& \ \ \ \  \alpha\beta=2}

Now,

  • We have to find   \sf{\dfrac{1}{\alpha}+\dfrac{1}{\beta}}.

\implies \sf{\dfrac{1}{\alpha}+\dfrac{1}{\beta}=\dfrac{\alpha+\beta}{\alpha\beta}}

\implies \sf{\dfrac{1}{\alpha}+\dfrac{1}{\beta}=\dfrac{-6}{2}}

\implies \sf{\dfrac{1}{\alpha}+\dfrac{1}{\beta}=-3}

\boxed{\bold{\sf{\therefore \dfrac{1}{\alpha}+\dfrac{1}{\beta}=-3}}}

Similar questions