if alpha and beta are the zeroes of the polynomials x=x²-2x+5, then find the quadratic polynomial whose zeroes are alpha +beta and 1/alpha + 1/beta
Answers
Answered by
12
/* For all real values of k it is true. */
Therefore.,
•••♪
Answered by
0
Answer:
5x^2-12x+4
Step-by-step explanation:
alpha+beta=2
alpha.beta=5
sum of zeros=alpha+beta=alpha+beta+1/alpha+1/beta
=>alpha^2.beta+alpha.beta^2+beta+alpha/alpha.beta
=>alpha.beta(alpha+beta)+alpha+beta/alpha.beta
=>5.2+2/5
=>12/5
Product of zeros=alpha.beta=(alpha+beta).(1/alpha+1/beta)
=>1+alpha/beta+beta/alpha+1
=>alpha^2+beta^2/alpha.beta+2
=>(alpha+beta)^2-2.alpha.beta/alpha.beta+2
=>(2)^2-2.5/5+2
=>-6/5+2
=>4/5
required polynomial = x^2-(alpha+beta)x+alpha.beta
=>x^2-12/5+4/5 = 0
=>5x^2-12x+4/5=0
=5x^2-12x+4 Ans.
Thank You
Similar questions