Math, asked by anshu32633, 1 year ago

if alpha and beta are the zeroes of the quadratic polynomial f(x)= ax^2 + bx + c, then evaluate alpha^4 + beta^4​

Answers

Answered by praneethks
4

Step-by-step explanation:

if \:  \alpha  \: and \:  \beta  \: are \: zeroes \: of \: the \:

quadratic \: polynomial \: f(x) =a {x}^{2} +

bx + c

 \alpha  +  \beta  =  -  \frac{b}{a} \: and \:  \alpha  \beta  =  \frac{c}{a}

 { \alpha }^{4} +  { \beta }^{4} =  >  {( { \alpha }^{2} +  { \beta }^{2})}^{2} - 2 { \alpha }^{2} { \beta }^{2} =  >

 {( { \alpha }^{2} + { \beta }^{2})}^{2} - 2 {( \alpha  \beta )}^{2} =  >

  {( {( \alpha  +  \beta )}^{2} - 2 \alpha  \beta ) }^{2} - 2 \frac{ {c}^{2} }{ {a}^{2} } =  >

 {( \frac{ {b}^{2} }{ {a}^{2}} - 2 \frac{c}{a})}^{2} - 2 \frac{ {c}^{2} }{ {a}^{2}} =  >  (\frac{ {b}^{2} - 2ac }{ {a}^{2}})^2 - 2 \frac{ {c}^{2} }{{ a}^{2}}

Hope it helps you.

Similar questions