If alpha and beta are the zeroes of the quadratic polynomial p(x)=ax2+bx+c then evaluate alpha minus beta.
Answers
Answered by
6
let alfa be A and beta be B
then,
A+B=(-b/a)
AB=c/a
So,A-B=_/((A-B)^2)
=>_/(A^2+B^2+2AB)
=>_/((A+B)^2-4AB)
=>_/(b^2/a^2 - 4c/a)
=>_/((b^2-4ac)/a^2)
=>(_/(b^2-4ac))/ |a| (mod a means positive a)
PLZ MARK IT AS BRAINLIEST..
then,
A+B=(-b/a)
AB=c/a
So,A-B=_/((A-B)^2)
=>_/(A^2+B^2+2AB)
=>_/((A+B)^2-4AB)
=>_/(b^2/a^2 - 4c/a)
=>_/((b^2-4ac)/a^2)
=>(_/(b^2-4ac))/ |a| (mod a means positive a)
PLZ MARK IT AS BRAINLIEST..
Answered by
14
α + β = -b/a
αβ = c/a
We have to find α - β
[α - β ]² = [ α + β ] ² - 4αβ
= [ -b/a ]² - 4 × c/a
= b²/a² - 4c/a
= b² - 4ac /a²
α - β = √[ b² - 4ac /a² ]
= √[ b² - 4ac /a ]
αβ = c/a
We have to find α - β
[α - β ]² = [ α + β ] ² - 4αβ
= [ -b/a ]² - 4 × c/a
= b²/a² - 4c/a
= b² - 4ac /a²
α - β = √[ b² - 4ac /a² ]
= √[ b² - 4ac /a ]
Similar questions