If alpha and beta are the zeroes of the quadratic polynomial : x²-7x+10, evaluate alpha³+beta³
Answers
- we need to find the value of α³ + β³
- Quadratic polynomial :- x² - 7x + 10
- a = 1
- b = -7
- c = 10
we know that,
⚘ Sum of zeroes = -b/a
↛ α + β = -(-7)/1
↛ α + β = 7 .....1)
⚘ Product of zeroes = c/a
↛ αβ = 10/1
↛ αβ = 10 .......2)
Now,
we know that,
⇝ (a + b)² = a² + b² + 2ab
⇝ a² + b² = (a + b)² - 2ab ......3)
Now,
- Value of α³ + β³ is :-
⇝ α³ + β³ = (α + β)(α² + β² - αβ)
- From 1) , 2) and 3)
⇝ α³ + β³ = 7[(α + β)² - 2αβ - αβ]
⇝ α³ + β³ = 7 [7² - 2 × 10 - 10]
⇝ α³ + β³ = 7(49 - 20 - 10)
⇝ α³ + β³ = 7( 49 - 30)
⇝ α³ + β³ = 7 × 19
⇝ α³ + β³ = 133
Hence,
- Value of α³ + β³ is 133
━━━━━━━━━━━━━━━━━━━━━━━━━
✴ If alpha and beta are the zeroes of the quadratic polynomial : x²-7x+10. Evaluate alpha³+beta³ .
➡ α³ + β³ is 133
Given, quadratic polynomial :- x² - 7x + 10
Taking,
- a = 1
- b = -7
- c = 10
- Sum of zeroes = -b/a
↗ α + β = -(-7)/1
↗ α + β = 7 .....(1)
- Product of zeroes = c/a
↗ αβ = 10/1
↗ αβ = 10 .......(2)
Now,
We know that,
▶ (a + b)² = a² + b² + 2ab
↗ a² + b² = (a + b)² - 2ab ......(3)
So, α³ + β³
▶ α³ + β³ = (α + β)(α² + β² - αβ)
Taking from (1, 2 & 3)
▶ α³ + β³
▶ 7{(α + β)² - 2αβ - αβ}
▶ 7 {7² - 2 × 10 - 10}
▶ 7(49 - 20 - 10)
▶ 7( 49 - 30)
▶ 7 × 19
▶ 133
Hence,The Value of α³ + β³ is 133.
____________________________________