Math, asked by smithaprakshan1, 3 months ago

if alpha and beta are the zeroes of the quadratic polynomial f(x)=ax²+bx+c then evaluate alpha square + beta square

Answers

Answered by BrainlyMan05
36

Answer:

Answer:

Step-by-step explanation:

Question:

If alpha and beta are the zeroes of the quadratic polynomial f(x)=ax²+bx+c then evaluate alpha square + beta square

Given:

  • Alpha and Beta are the zeroes of the quadratic polynomial f(x)=ax²+bx+c

To find:

Alpha square + Beta square

Let:

  • \alpha = Alpha
  • \beta = Beta

Solution:

We know that,

  • Sum of the zeroes: \alpha+\beta = \bf\dfrac{-b}{a}
  • Product of zeroes: \alpha\beta = \bf\dfrac{c}{a}

\therefore {\alpha}^{2} + {\beta}^{2} = (\alpha+\beta)^{2} -2\alpha\beta

\implies \dfrac{(-b)^2}{(a)^2} - \dfrac{2c}{a}\\\implies \dfrac{b^2-2ac}{a^2}

Answered by AestheticSky
5

Given:-

  • f(x) = ax²+bx+c = 0

To find:-

  • α² + ß²

α+β = \sf\dfrac{-b}{a}

αß = \sf\dfrac{c}{a}

Identity:-

\underline{\boxed{\sf α²+ß² = (α+ß)²-2αß}}

Solution:-

\implies (α+ß)²-2αß

\implies  {\bigg(\sf\dfrac{-b}{a}\bigg)}^{2} - 2 \times \bigg(\sf\dfrac{c}{a}\bigg)

\implies \sf\dfrac{b²}{a²} - \sf\dfrac{2c}{a}

\implies \sf\dfrac{b²-2ac}{a²}

Similar questions