Math, asked by jeffijoshna, 1 year ago

if alpha and beta are the zeroes of the quadratic polynomial p(x)=ax2+bx+c then evaluate alpha square beta+alpha betasq

Answers

Answered by MaheswariS
11

\underline{\textbf{Given:}}

\mathsf{\alpha\;and\;\beta\;are\;zeroes\;of\;P(x)=ax^2+bx+c}

\underline{\textbf{To find:}}

\textsf{The value of}

\mathsf{\alpha^2\beta+\alpha\beta^2}

\underline{\textbf{Solution:}}

\mathsf{Consider,\;P(x)=ax^2+bx+c}

\mathsf{Sum\;of\;zeroes=\dfrac{-b}{a}}

\implies\mathsf{\alpha+\beta=\dfrac{-b}{a}}

\mathsf{Product\;of\;zeroes=\dfrac{c}{a}}

\implies\mathsf{\alpha\,\beta=\dfrac{c}{a}}

\mathsf{Now,}

\mathsf{\alpha^2\beta+\alpha\beta^2}

\mathsf{=\alpha\beta(\apha+\beta)}

\mathsf{=\dfrac{c}{a}\left(\dfrac{-b}{a}\right)}

\mathsf{=\dfrac{-bc}{a^2}}

\implies\boxed{\mathsf{\alpha^2\beta+\alpha\beta^2=\dfrac{-bc}{a^2}}}

Answered by ms9528836
5

Answer:

p(x)=ax²+bx+c

Step-by-step explanation:

alpha +beta =-b/a

  • alpha.beta = c/a

This is your answer

Attachments:
Similar questions