Math, asked by shubh2502, 10 months ago

If alpha and beta are the zeros of 6 x square + x - 2 then what is the value of alpha^4
+ beta^4

Answers

Answered by BrainlyConqueror0901
24

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{\alpha^{4}+\beta^{4}=\frac{337}{1296}}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline  \bold{Given:}} \\  \tt: \implies  {6x}^{2}   + x - 2 = 0 \\  \\ \red{\underline  \bold{To \: Find:}}\\  \tt:  \implies  { \alpha }^{4}  +  { \beta }^{4}  = ?

• According to given question :

 \tt:  \implies  {6x}^{2}  + x - 2 = 0 \\ \\ \text{Solving\:by\:middle\:term\:spiliting}  \\  \tt:  \implies  {6x}^{2}   -  3x  + 4x - 2 = 0 \\  \\  \tt:  \implies 3x(2x - 1) + 2(2x - 1) = 0 \\  \\  \tt:  \implies (3x + 2)(2x - 1) = 0 \\  \\   \green{\tt:  \implies x =  \frac{ - 2}{3}  \: and \:  \frac{1}{2}}  \\  \\   \green{\tt \circ \: \alpha  =  \frac{ - 2}{3} } \\  \\  \green{\tt \circ \:  \beta   =  \frac{ 1}{2} } \\  \\  \bold{for \: finding \: value} \\  \tt:  \implies  { \alpha }^{4}  +  { \beta }^{4}  \\  \\  \tt:  \implies  (\frac{ - 2}{3} )^{4}  +  (\frac{1}{2} )^{4}  \\  \\  \tt:  \implies  \frac{16}{81}  +  \frac{1}{16}  \\  \\  \tt:  \implies  \frac{256 + 81}{1296}  \\  \\   \green{\tt:  \implies  \frac{337}{1296} }

Answered by BendingReality
58

Answer:

337 / 1296

Step-by-step explanation:

Given :

6 x² + x - 2

= > Solving by splitting mid term :

= > 6 x² + 4 x - 3 x - 2

= > 2 x ( 3 x + 2 ) - ( 3 x + 2 )

= > ( 3 x + 2 ) ( 2 x - 1 )

Now :

α = > ( 2 x - 1 ) =  0

α = > 2 x = 1

α = > x = 1  /2

α = 1 / 2

= > α⁴ = 1 / 16 ... ( i )

Also :

β = > ( 3 x + 2 ) = 0

β = > 3 x = - 2

β = > x = - 2 / 3

β = - 2 / 3

= > β⁴ = 16 / 81 ... ( ii )

Adding equation ( i ) and ( ii ) we get :

α⁴ + β⁴ = 1 / 16 + 16 / 81

= > ( 256 + 81 ) / 1296

= > 337 / 1296

Therefore we get required answer.

Attachments:
Similar questions