Math, asked by jaiminvakharia, 1 year ago

if alpha and beta are the zeros of polynomial p(X)=3x^2-14x+15 find the alpha^2 +beta^2.​

Answers

Answered by ayush3520
50

alpha²+beta²=(alpha+beta) ²-2alphabeta

sum of roots=-b/a

product of roots=c/a

therefore,

alpha²+beta²=(14/3)²-2*15/3

alpha²+beta²=196/9 -10

alpha²+beta²=106/9

hope it helps

:-)

Answered by pinquancaro
32

The value of \alpha^2+\beta^2=\frac{106}{9}

Step-by-step explanation:

Polynomial :  p(x) = 3x^2 - 14x +15  whose \alpha and \beta are zeroes .

General equation : ax^2+bx+c=0

Where,

Sum of zeroes =  -\frac{b}{a}

Product of zeroes =  \frac{c}{a}

Sum of zeroes of given equation : \alpha+\beta=\frac{14}{3}

Product of zeroes of given equation : \alpha\beta =\frac{15}{3}=5

Formula used,

(a+b)^2=a^2+b^2+2ab\\(a+b)^2-2ab=a^2+b^2

The identity form is

(\alpha+\beta)^2-2 \alpha \beta=\alpha^2+\beta^2

Substitute the values,

(\frac{14}{3})^2-2(5)=\alpha^2+\beta^2\\\\\frac{106}{9}=\alpha^2+\beta^2

Therefore, the value of \alpha^2+\beta^2=\frac{106}{9}

#Learn more:

If alpha and beta are the zeroes of the polynomial p(x) = 3x2 - 14x +15 ,find the value of alpha square + beta square

https://brainly.in/question/3283197

Similar questions