If alpha and beta are the zeros of th polynomial f(x) =x^2-p(x+1)-c, show that (alpha+beta)(beta+1)=1-c
Answers
Answered by
322
Given that alpha and beta are the roots of the quadratic equation f(x) = x^2-p(x+1)-c = x^2-px-p-c = x^2 -px-(p+c),
comparing with ax^2 + bx + c, we have, a =1 , b= -p & c= -(p+c)
alpha+beta = -b/a = -(-p)/1 = p
& alpha*beta = c/a = -(p+c)/1 = -(p+c)
Therefore, (Alpha + 1)*(beta+1)
= Alpha*beta + alpha + beta + 1
= -(p+c) + p + 1
= -p-c+p+1
= 1-c
comparing with ax^2 + bx + c, we have, a =1 , b= -p & c= -(p+c)
alpha+beta = -b/a = -(-p)/1 = p
& alpha*beta = c/a = -(p+c)/1 = -(p+c)
Therefore, (Alpha + 1)*(beta+1)
= Alpha*beta + alpha + beta + 1
= -(p+c) + p + 1
= -p-c+p+1
= 1-c
Answered by
90
f(x) = x² - p x + q
α and β are the roots of the above equation.
to find α² / β² + β² / α² = ?
α = [ p + √(p² - 4q) ] / 2 and β = [ p - √(p² - 4 q) ] / 2
so, α + β = p and α β = q and α² β² = q²
=> α² + β² = (α+β)² - 2 αβ = p² - 2 q
=> α⁴ + β⁴ = (α² + β²)² - 2 α²β² = (p² - 2q)² - 2 q²
= p⁴ - 4 p² q + 4 q² - 2 q²
= p⁴ - 4 p² q + 2 q²
NOW , α² / β² + β² / α² = [ α⁴ + β⁴ ] / α² β² =
= [ p⁴ - 4 p² q + 2 q² ] / q²
α and β are the roots of the above equation.
to find α² / β² + β² / α² = ?
α = [ p + √(p² - 4q) ] / 2 and β = [ p - √(p² - 4 q) ] / 2
so, α + β = p and α β = q and α² β² = q²
=> α² + β² = (α+β)² - 2 αβ = p² - 2 q
=> α⁴ + β⁴ = (α² + β²)² - 2 α²β² = (p² - 2q)² - 2 q²
= p⁴ - 4 p² q + 4 q² - 2 q²
= p⁴ - 4 p² q + 2 q²
NOW , α² / β² + β² / α² = [ α⁴ + β⁴ ] / α² β² =
= [ p⁴ - 4 p² q + 2 q² ] / q²
Similar questions