Math, asked by ratheevansh032, 4 months ago

if alpha and beta are the zeros of the given polynomial p(x) = 4x^2 - x - 4.find 1/2alpha + 1/2beta
(class 10th maths chapter polynomial) ​

Answers

Answered by VishnuPriya2801
68

Answer:-

Given:

α & β are the zeroes of 4x² - x - 4.

On comparing with the standard form of a quadratic equation i.e., ax² + bx + c = 0 ,

let ,

  • a = 4
  • b = - 1
  • c = - 4

We know that,

Sum of the zeroes = - b/a

⟶ α + β = - ( - 1) / 4

⟶ α + β = 1/4

Multiply 1/2 both sides.

⟶ 1/2 (α + β) = (1/2)(1/4)

⟶ 1/2(α) + 1/2(β) = 1/8

The value of 1/2(α) + 1/2(β) is 1/8.

Answered by IdyllicAurora
137

Answer :-

 \: \: \boxed{\boxed{\rm{\mapsto \: \: \: Firstly \: let's \: understand \: the \: concept \: used}}}

Here the concept of Zeroes of Quadratic polynomials have been used. If a quadratic polynomial ax² + bx + c = 0 is given, then its zeroes will be α and β. And here the coefficients are given as :-

a = coefficient of x², b = coefficient of x and c = constant.

_______________________________________________

Formula Used :-

 \: \: \large{\boxed{\boxed{\bf{\alpha \: + \: \beta \: = \: \dfrac{(-b)}{a}}}}}

 \: \: \large{\boxed{\boxed{\bf{\alpha \: \times \: \beta \: = \: \dfrac{c}{a}}}}}

_______________________________________________

Question :-

If alpha and beta are the zeros of the given polynomial p(x) = 4x² - x - 4. Find 1/2alpha + 1/2beta.

_______________________________________________

To find :-

 \: \large{\tt{\dfrac{1}{2} \alpha \: + \: \dfrac{1}{2} \beta \: = \: ?}}

_______________________________________________

Solution :-

Given,

➺ p(x) = 4x² - x - 4

Here let the zeroes of p(x) be α and β.

Here, a = 4 , b = (-1) and c = (-4).

Then, according to the formula, we get,

 \\ \large{\bf{\longmapsto \: \: \: \alpha \: + \: \beta \: = \: \dfrac{(-b)}{a}}}

Dividing all the terms by 2, we get,

 \\ \large{\bf{\longmapsto \: \: \dfrac{\alpha}{2} \: + \: \dfrac{\beta}{2}  \: = \: \dfrac{\dfrac{(-b)}{a}}{2}}}

 \: \\ \large{\bf{\longmapsto \: \: \dfrac{1}{2} \alpha \: + \: \dfrac{1}{2} \beta \: = \: \dfrac{(-b)}{2a}}}

By applying the values, we get,

 \: \\ \large{\bf{\longmapsto \: \: \: \dfrac{1}{2} \alpha \: + \: \dfrac{1}{2} \beta \: = \: \dfrac{-(-1)}{2 \: \times \:4}}}

  \: \\ \large{\boxed{\bf{\dfrac{1}{2} \alpha \: + \: \dfrac{1}{2} \beta \: = \: \dfrac{1}{8}}}}

 \\ \large{\overbrace{\underbrace{\sf{Thus \: the \: required \: answer \: is \: \dfrac{1}{8}}}}}

_______________________________________________

\: \: \underline{\underline{\rm{\Longrightarrow \: \: Confused? \: Don't \: worry \: let's \: verify \: it \: :-}}}

For verification we need to simply apply the values we got. Then,

α + β = -b/a

➣ ½α + ½β = ¼ × ½

➣ ½(α + β) = ¼ × ½

➣ ½(α + β) =

Clearly, we got the desired answer. So our answer is correct.

Hence, verified.

_______________________________________________

 \: \: \: \huge{\boxed{\tt{\large{More \: to \: know \: :-}}}}

Polynomials are the equations formed using constant and linear terms but can be of many degrees.

Linear Equations are the equations formed using constant and linear terms but of single degrees.

Different types of Polynomials :-

  • Linear Polynomials
  • Quadratic Polynomials
  • Cubic Polynomials
  • Bi - Quadratic Polynomials
Similar questions