Math, asked by manojm, 1 year ago

if alpha and beta are the zeros of the polynomial 6x square + x minus 2 find the value of one by Alpha Plus One by beta minus alpha beta

Answers

Answered by sijasubbiah
13
Hey

Here is your answer,

In attachment

Hope it helps you!
Attachments:
Answered by mysticd
5

Answer:

\frac{1}{\alpha}+\frac{1}{\beta}-\alpha \beta= \frac{5}{6}

Step-by-step explanation:

 Given\:\alpha\:and\:\beta\\are \:the\: zeroes\:of\:the\\polynomial \:6x^{2}+x-2

 Compare \:above\: polynomial\:with \\ax^{2}+bx+c,we\:get

a=6, b=1,c=-2,

i)Sum\:of\:the\: zeroes=\frac{-b}{a}

\implies \alpha+\beta=\frac{-1}{6}\:---(1)

 ii)Product\:of\:the\: zeroes=\frac{c}{a}

\implies \alpha \beta=\frac{-2}{6}\\=\frac{-1}{3}\:---(2)

 iii) \frac{1}{\alpha}+\frac{1}{\beta}\\=\frac{\alpha+\beta}{\alpha \beta}\\=\frac{\frac{-1}{6}}{\frac{-1}{3}}\\=\frac{1}{2}\:---(3)

\implies Now,\\\frac{1}{\alpha}+\frac{1}{\beta}-\alpha \beta\\=\frac{1}{2}-\frac{-1}{3}\\=\frac{1}{2}+\frac{1}{3}\\=\frac{3+2}{6}\\=\frac{5}{6}

Therefore,

\frac{1}{\alpha}+\frac{1}{\beta}-\alpha \beta= \frac{5}{6}

•••♪

Similar questions