Math, asked by unknown5162, 1 year ago

if alpha and beta are the zeros of the polynomial f of x = 5 x square + 4 x minus 9 then evaluate Alpha square + beta square​

Answers

Answered by ihrishi
2

Step-by-step explanation:

Given polynomial is:

p(x) = 5 {x}^{2}  + 4x - 9 \\ equting \: it \: with \\ p(x) = a {x}^{2}  + bx  + c \\ we \: find \: \\ a \:  = 5 \\ b = 4 \\ c =  - 9 \\  \because \:  \alpha  \: and \:  \beta  \: are \: zeros \: of \: given  \\ \: polynomial \\  \therefore \: sum \: of \: zeros \\  \alpha  +  \beta  =  -  \frac{b}{a}  =  -  \frac{4}{5}  \\ product \: of \: zeros \\  \alpha  \beta  =  \frac{c}{a}  =  \frac{ - 9}{5}  \\ now \\ ( { \alpha  +  \beta )}^{2}  =  { \alpha }^{2}  +  { \beta }^{2}  + 2 \alpha  \beta  \\ (  - \frac{4}{5} ) ^{2}  = { \alpha }^{2}  +  { \beta }^{2}  + 2  \times ( \frac{ - 9}{5} ) \\  \frac{16}{25}  = { \alpha }^{2}  +  { \beta }^{2}  -  \frac{18}{5}  \\  \frac{16}{25}  +  \frac{18}{5}  = { \alpha }^{2}  +  { \beta }^{2}  \\ \frac{16}{25}  +  \frac{18 \times 5}{5 \times 5}  = { \alpha }^{2}  +  { \beta }^{2}  \\ { \alpha }^{2}  +  { \beta }^{2}  = \frac{16}{25}  +  \frac{90}{25} =  \frac{16 + 90}{25}  \\ { \alpha }^{2}  +  { \beta }^{2}  = \frac{106}{25}

Similar questions