If alpha and beta are the zeros of the polynomial f x is equals to 2 X square + 11 x + 5 then find the value of Alpha cube beta + alpha beta cube
Answers
Step-by-step explanation:
Using relationship between coefficeints and zeroes we get,
\alpha+\beta=\frac{-b}{a}=\frac{-2}{3}
\alpha\,\beta=\frac{c}{a}=\frac{-6}{3}=-2
1).
\alpha^2+\beta^2=(\alpha+\beta)^2-2\alpha\beta
\alpha^2+\beta^2=(\frac{-2}{3})^2-2(-2)
\alpha^2+\beta^2=\frac{4}{9}+4
\alpha^2+\beta^2=\frac{40}{9}
2).
(\alpha-\beta)^2=\alpha^2+\beta^2-2\alpha\beta
(\alpha-\beta)^2=\frac{40}{9}-2(-2)
(\alpha-\beta)^2=\frac{40}{9}+4
(\alpha-\beta)^2=\frac{76}{9}
\alpha-\beta=\pm\frac{\sqrt{76}}{3}
3).
\frac{1}{\alpha}+\frac{1}{\beta}=\frac{\alpha+\beta}{\alpha\,\beta}=\frac{\frac{-2}{3}}{-2}=\frac{1}{3}
4).
\alpha^3+\beta^3=(\alpha+\beta)(\alpha^2+\beta^2-\alpha\,\beta)
\alpha^3+\beta^3=(\frac{-2}{3})(\frac{40}{9}-(-2))
\alpha^3+\beta^3=(\frac{-2}{3})(\frac{40}{9}+2)
\alpha^3+\beta^3=\frac{-2}{3}\frac{58}{9}
\alpha^3+\beta^3=\frac{-116}{27}