if alpha and beta are the zeros of the polynomial p x = x square - px + 36 and Alpha square + beta square = 9 then the value of P is:
a) 6 b) 3 c) 8 d) 9
Answers
Answered by
0
EXPLANATION.
α and β are the zeroes of the polynomial.
⇒ p(x) = x² - px + 36.
As we know that,
Sum of the zeroes of the quadratic polynomial.
⇒ α + β = -b/a.
⇒ α + β = -(-p/1).
⇒ α + β = p.
Products of the zeroes of the quadratic polynomial.
⇒ αβ = c/a.
⇒ αβ = 36.
To find : Value of p.
⇒ α² + β² = 9.
⇒ (α + β)² - 2αβ = 9.
Put the values in the expression, we get.
⇒ (p)² - 2(36) = 9.
⇒ p² - 72 = 9.
⇒ p² = 9 + 72.
⇒ p² = 81.
⇒ p = ±√81.
⇒ p = 9.
Value of p = 9.
Option [D] is correct answer.
MORE INFORMATION.
D = discriminant Or b² - 4ac.
(1) If D < 0.
One roots : α + iβ.
Other roots : α - iβ.
(2) If D > 0.
One roots : α + √β.
Other roots : α - √β.
Similar questions