if alpha and beta are the zeros of the polynomial
find the value of
Answers
Step-by-step explanation:
Answer:
\begin{gathered}\left(\frac{\alpha}{\beta}+\frac{\beta}{\alpha}\right)+2\left(\frac{1}{\alpha}+\frac{1}{\beta}\right)+3\alpha\beta\\=8\end{gathered}
(
β
α
+
α
β
)+2(
α
1
+
β
1
)+3αβ
=8
Step-by-step explanation:
\begin{gathered}Given\: \alpha \:and\:\beta\\are\: zeroes\:of\:3x^{2}-6x+4\end{gathered}
Givenαandβ
arezeroesof3x
2
−6x+4
compare this with ax²+bx+c,we get
a = 3, b=-6, c=4,
\begin{gathered}i) Sum\:of \:the \: zeroes\\=\frac{-b}{a}\\=\frac{-(-6)}{3}\\=\frac{6}{3}\\\alpha+\beta=2 --(1)\end{gathered}
i)Sumofthezeroes
=
a
−b
=
3
−(−6)
=
3
6
α+β=2−−(1)
\begin{gathered}ii) Product\:of\:the\: zeroes\\=\frac{c}{a}\\=\\alpha\beta=\frac{4}{3}---(2)\end{gathered}
ii)Productofthezeroes
=
a
c
=
alphaβ=
3
4
−−−(2)
\begin{gathered} iii)\alpha^{2}+\beta^{2}\\=\left(\alpha+\beta\right)^{2}-2\alpha\beta\\=\left(2\right)^{2}-2\times \frac{4}{3}\\=4-\frac{8}{3}\\=\frac{12-8}{3}\\=\frac{4}{3}--(3)\end{gathered}
iii)α
2
+β
2
=(α+β)
2
−2αβ
=(2)
2
−2×
3
4
=4−
3
8
=
3
12−8
=
3
4
−−(3)
\begin{gathered}Now,\\\left(\frac{\alpha}{\beta}+\frac{\beta}{\alpha}\right)+2\left(\frac{1}{\alpha}+\frac{1}{\beta}\right)+3\alpha\beta\\\end{gathered}
Now,
(
β
α
+
α
β
)+2(
α
1
+
β
1
)+3αβ
\begin{gathered}=\left(\frac{\alpha^{2}+\beta^{2}}{\alpha\beta}\right)+2\left(\frac{\beta+\alpha}{\alpha\beta}\right)+3\alpha\beta\\=\left(\frac{\frac{4}{3}}{\frac{4}{3
Mark as brainiest