if alpha and beta are the zeros of the polynomial x^2-16,then alpha×beta(alpha + beta)
Answers
Answered by
1
Answer:
f(x)=x2−x−k=0
α+β=1αβ=−k
α−β=9αβ=−k
α=55(−4)=−k
β=−4k=20
∴k=20
Step-by-step explanation:
f(x)=x2−x−k=0
α+β=1αβ=−k
α−β=9αβ=−k
α=55(−4)=−k
β=−4k=20
∴k=20
Answered by
15
EXPLANATION.
α and β are the zeroes of the polynomial.
⇒ x² - 16.
As we know that,
Quadratic equation written in the form of : ax² + bx + c.
Sum of the zeroes of the quadratic polynomial.
⇒ α + β = - b/a.
⇒ α + β = 0.
Products of the zeroes of the quadratic polynomial.
⇒ αβ = c/a.
⇒ αβ = (-16)/1. = - 16.
To find : αβ(α + β).
Put the values in the equation, we get.
⇒ αβ(α + β) = (- 16)(0).
⇒ αβ(α + β) = 0.
MORE INFORMATION.
D = Discriminant.
D = b² - 4ac.
(1) If D < 0.
One roots = α + iβ.
Other roots α - iβ.
(2) If D > 0.
One roots = α + √β.
Other roots = α - √β.
Similar questions