Math, asked by raghavp, 1 year ago

if alpha and beta are the zeros of the polynomial x2+4x+3 find the values for 1/alpha + 1/beta AND 1/ALPHA SQUARE +1/beta square

Answers

Answered by ShivamSaurabh1
6
this is the answer for your question.
Attachments:
Answered by phillipinestest
1

The value of  \bold{\frac{1}{\alpha}+\frac{1}{\beta}=1 \frac{1}{3}}

The value of  \bold{\frac{1}{\alpha}+\frac{1}{\beta}=1 \frac{1}{9}} .

Solution:

The polynomial equation is  x^{2}+4 x+3=0,  

To find the roots of the equation we use the given polynomial equation

x^{2}+3 x+x+3=0

x(x+3)+1(x+3)=0  

(x+3)(x+1)=0    

x=3 and x=1    

 \bold{\alpha=3, \beta=1}

To find the value  \bold{\frac{1}{\alpha}+\frac{1}{\beta}} :

Substituting the value of \alpha and \beta in \frac{1}{\alpha}+\frac{1}{\beta}

\frac{1}{\alpha}+\frac{1}{\beta}=\frac{1}{3}+\frac{1}{1}=1 \frac{1}{3} \\\\Hence, \frac{1}{\alpha}+\frac{1}{\beta}=1 \frac{1}{3}

We put \alpha=3, \beta=1

To find the value  \bold{\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}} :

Substituting the value of \alpha \text { and } \beta \text { in } \frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}

\left(\frac{1}{\alpha}\right)^{2}+\left(\frac{1}{\beta}\right)^{2}=\left(\frac{1}{3}\right)^{2}+\left(\frac{1}{1}\right)^{2}=1 \frac{1}{9}

Hence, \frac{1}{\alpha}+\frac{1}{\beta} \text { is } 1 \frac{1}{9} .

Similar questions