Math, asked by kusum8093, 1 year ago

if alpha and beta are the zeros of the quadratic polynomial f (x) = x^2 - px +q then evaluate : 1/alpha + 1 /beta​

Answers

Answered by muskanc918
86

\huge{\rm{\underline{\underline{Answer:-}}}}

The value of \large{\sf{ \dfrac{1}{ \alpha }  +  \dfrac{1}{ \beta }   }} is \large{\sf{  \dfrac{p}{q}   }}.

\large{\rm{\underline{\bigstar{Step-by-Step\:Explanation:-}}}}

The given quadratic polynomial is \large{\sf{f(x) =  {x}^{2}  - px + q}} and its zeroes are \large{\sf{\alpha}} and \large{\sf{\beta}}

\large{\sf{Sum\:of\:zeroes = \dfrac{-Coefficient\:of\:x}{Coefficient\:of\:{x}{2}}}}

\large{\sf{\alpha + \beta  = \dfrac{-(-p)}{1}}}.....(i)

\large{\sf{    Product\:of\:zeroes = \dfrac{Constant\:term}{Coefficient\:of\:{x}{2}}}}

\large{\sf{\alpha \times \beta = \dfrac{q}{1}}}.....(ii)

Now,

\large{\sf{ = \dfrac{1}{ \alpha }  +  \dfrac{1}{ \beta }  }}

= \large{\sf{  \dfrac{\beta + \alpha}{ \alpha \beta }   }}

Using equation (i) and (ii) , put the values of α + β and αβ -

\large{\sf{ = \dfrac{p}{q}   }}.

Hence the value of \large{\sf{ \dfrac{1}{ \alpha }  +  \dfrac{1}{ \beta }   }} is \large{\sf{  \dfrac{p}{q}   }}.

Answered by Anonymous
48

Hey there

refer to attachment

Attachments:
Similar questions