Math, asked by mishrasweta1947, 6 months ago

If alpha and Beta are the zeros of the quadratic polynomial p(x) = 4x2 - 5x - 1, find the value of alpha2 beta+beta2 alpha??

Answers

Answered by kaushik05
38

Given:

 \star \bold{  \alpha  \:  \: and \:  \:  \beta  \: are \:  \: the \: zeroes \: of \: the} \\  \bold{quadratic \: polynomial \:  \:} \\  \bold{ p(x) = 4 {x}^{2} - 5x - 1 }

To find :

 \star \:  { \alpha }^{2}  \beta  +  { \beta }^{2}  \alpha

Solution :

• p ( x ) = 4x² - 5x - 1

Compare with ax² + bx +c , we get

a = 4 , b = -5 and c = -1 .

 \leadsto \:  \alpha   +  \beta  =  \frac{ - b}{a}  =  \frac{ - ( - 5)}{4}  =  \frac{5}{4}  \\  \\  \leadsto \:  \alpha  \beta  =  \frac{c}{a}  =  \frac{ - 1}{4}

Now ,

 \leadsto \:  { \alpha }^{2}  \beta  +  {  \beta }^{2}  \alpha  \\  \\  \leadsto \:  \alpha  \beta ( \alpha  +  \beta ) \\  \\  \leadsto \:  \frac{ - 1}{4} ( \frac{5}{4} ) \\  \\  \leadsto \:  \frac{ - 5}{16}

Hence , the value is -5/16.

Similar questions