if alpha and beta are the zeros of the quadratic polynomial x2-x-6 find a quadratic polynomial whose zeros are [alpha +beta] and 1/alpha + 1/beta
Answers
Answered by
4
x2-x-6=0
x²-3x+2x-6=0
x(x-3)+2(x-3)=0
(x-3)(x+2)=0
=@=3,bita=-2
alpha+bita=3+(-2)=1
1/alpha+1/bita=1/3-1/2=2-3/6=
eq.is x²+(a1+a2)+a1a2=0
x²-(1-1/6)x+1(-1/6)=0
x²+5/6x-1/6=0
6x²-5x-1=0
x²-3x+2x-6=0
x(x-3)+2(x-3)=0
(x-3)(x+2)=0
=@=3,bita=-2
alpha+bita=3+(-2)=1
1/alpha+1/bita=1/3-1/2=2-3/6=
eq.is x²+(a1+a2)+a1a2=0
x²-(1-1/6)x+1(-1/6)=0
x²+5/6x-1/6=0
6x²-5x-1=0
heeeeema:
umm i have a doubt in 1/beta it should be 1/-2 right....why is it 1/2
Answered by
1
Answer:
Quadratic polynomial is
Step-by-step explanation:
Given Quadratic Polynomial ,
x² - x - 6
we first find zeroes of the fiven polynomial,
x² - x - 6 = 0
x² - 3x + 2x - 6 = 0
x ( x - 3 ) + 2 ( x - 3 ) = 0
( x - 3 ) ( x + 2 ) = 0
⇒ x = 3 , -2
⇒ α = 3 & β = -2
So, Zeroes of New polynomial,
α + β = 3 + ( -2 ) = 1
1/α + 1/β = 1/3 + 1/(-2) = 1/(-6)
let say zeroes of new polynomial,
x = 1 and y = 1/(-6)
Sum of zeroes of new polynomial = 1 + 1/(-6) = 5/(-6)
Product of zeroes = 1 × 1/(-6) = 1/(-6)
Quadratic polynomial is
Similar questions