Math, asked by sherlin88, 8 months ago

if alpha and beta are the zeros of x square - 6 X + K what is the value of k if 3 alpha + 2 B tech 20.

Answers

Answered by VishnuPriya2801
50

Answer:-

Let alpha = p and beta = q.

Given Polynomial:

x² - 6x + k

Let a = 1 ; b = - 6 ; c = k

We know that,

sum of the zeroes = - b/a

→ p + q = - (- 6)/1

p + q = 6 -- equation (1)

Product of the zeroes = c/a

pq = k -- equation (2)

And also given that,

3p + 2q = 20 -- equation (3)

Multiplying equation (1) by 2 and subtracting equation (1) from (3) we get,

→ 3p + 2q - 2(p + q) = 20 - 2(6)

→ 3p + 2q - 2p - 2q = 20 - 12

→ p = 8

Substitute "p = 8" in equation (1)

→ p + q = 6

→ 8 + q = 6

→ q = 6 - 8

→ q = - 2

Putting the values of p & q in equation (2) we get,

→ (8)( - 2) = k

→ k = - 16

Hence, the value of k is - 16.

Answered by Anonymous
145

\huge{\bold{\star{\fcolorbox{black}{lightgreen}{ANSWER}}}}⋆

  • The value of k = - 16.

\huge{\bold{\star{\fcolorbox{black}{lightgreen}{EXPLANATION}}}}⋆

\blue{\bold{\underline{\underline{Let}}}}

  • Alpha = p.
  • Beta = q.

\blue{\bold{\underline{\underline{Given  \: Polynomial}}}} </p><p>

  • x² - 6x + k

\blue{\bold{\underline{\underline{Let}}}}

  • a = 1.
  • b = -6.
  • c = k.

\blue{\bold{\underline{\underline{Formula}}}}

{\boxed{\rm{Sum \:  of \:  the \:  zeroes =  \frac{- b}{a}}}}

\blue{\bold{\underline{\underline{Put  \: the  \: values}}}}

p + q =  \frac{ - ( - 6)}{1}

\implies \: p + q = 6 \: ----- (i)

\blue{\bold{\underline{\underline{Formula}}}}

{\boxed{\rm{Product  \: of \:  the  \: zeroes =  \frac{c}{a} }}}</p><p></p><p>

\blue{\bold{\underline{\underline{So}}}}

\implies \: pq = k ---- (ii)

\blue{\bold{\underline{\underline{Also  \: Given}}}}

\implies 3p + 2q = 20 ---- (iii)

\blue{\bold{\underline{\underline{Multiplying  \: equation  \: (i) \:  by \:  (ii)  \: and  \: subtracting  \: equation  \: (i)  \: from  \: (iii)}}}}

3p + 2q -2(p + q) = 20 - 2(6)

  =&gt;  3p + 2q - 2p - 2q = 20 + 12

 =  &gt; p = 8

\blue{\bold{\underline{\underline{Substitute \:  (p = 8)  \: in \:  equation  \: (i)}}}}

p + q = 6

\implies \: 8 + q = 6

\implies \: q  = 6 - 8

\implies \: q =  - 2

\blue{\bold{\underline{\underline{Putting \: the \: values \: of \: p \: and \:  q  \: equation \:  (ii)}}}}</p><p>

(8)( - 2) = k

\implies \: k =  - 16

\blue{\bold{\underline{\underline{ANSWER}}}}

  • The value of k = -16
Similar questions