If
Alpha and beta are thezeros of the
polynomials 2x² 11x+12 , then find
value of alpha2^beta+alphabeta2^
Answers
Answered by
6
Step-by-step explanation:
Given :
α & β are zeroes of the polynomial 2x² - 11x + 12
To Find :
Value of α²β + αβ²
Solution :
Compare given equation 2x² - 11x + 12 with ax² + bx + c , we get ,
⇒ a = 2 , b = -11 , c = 12
Then ,
Sum of zeroes , α + β = -b/a = 11/2 ... (1)
Product of zeroes , αβ = c/a = 12/2 = 6 ... (2)
Now , our required value,
⇒ α²β + αβ²
⇒ αβ ( α + β ) ... [ From (1) & (2) ]
⇒ 6 ( 11 / 2 )
⇒ 33
Similar questions