Math, asked by saloni9282, 9 months ago

If alpha and beta are two zeros of plynomial x^2+x+1 than find 1\alpha+1/beta

Answers

Answered by Abhishek474241
1

AnSwEr

{\tt{\red{\underline{\large{Given}}}}}

A polynomial

X²+x-12

{\sf{\green{\underline{\large{To\:Find}}}}}

  • Factors of the polynomial

\tt\dfrac{1}{\alpha}+\dfrac{1}{\beta}

  • Relationship between cofficient

{\sf{\pink{\underline{\Large{Explanation}}}}}

X²+x-12

  • we have to spilt the middle term in such a way that the product become -12 and sum become x

X²+X+12

=>X²+4x-3x-12

=>x(x+4)-3(x+4)

=>(x-3) (x+4)

=>x=3,-4

Let the zeroes of the polynomial be\tt\alpha{and}\beta

Then,

\rightarrow\tt\alpha{+}\beta{=}\frac{-b}{a}

&

\rightarrow\tt\alpha{\times}\beta{=}\frac{c}{a}

Here,

a=1

b=1

C=-12

Here

\rightarrow\tt\alpha{+}\beta{=}\dfrac{-1}{1}

&

\rightarrow\tt\alpha{\times}\beta{=}\dfrac{-12}{1}

Solving

\tt\dfrac{1}{\alpha}+\dfrac{1}{\beta}

\rightarrow\tt\dfrac{1}{\alpha}+\dfrac{1}{\beta}

\rightarrow\tt\dfrac{\alpha+\beta}{\alpha\beta}

Putting values

=>-1/-12

=>1/12

Additional Information

\rightarrow\tt\alpha{+}\beta{=}\dfrac{-1}{1}

\rightarrow\tt\alpha{+}\beta{=}\dfrac{Cofficient\:of\:X}{Cofficient\:of\:x^2}=

&

\rightarrow\tt\alpha{\times}\beta{=}\dfrac{-12}{1}

\rightarrow\tt{\large\alpha{\times}\beta{=}\dfrac{Constant\:term}{Cofficient\:of\:x^2}}

Hence,relation verified

Similar questions