Math, asked by swati772006, 6 months ago

If alpha and beta are zeroes of polynomial f(x)=2x^2+3x+1 then 1/alpha+1/beta =?​

Answers

Answered by Anonymous
1

GIVEN :-

  •  \rm{f(x) = 2 {x}^{2}  + 3x + 1}
  •  \rm{zeroes \:  =  \alpha  \: and \:  \beta }

TO FIND :-

  • \rm{ value \: of \: \dfrac{1}{ \alpha  } + \dfrac{1}{ \beta } }

SOLUTION :-

as we know that for zeroes of a polynomial :-

 \implies \boxed{ \rm{ \alpha  +  \beta =  \dfrac{ - b}{a}  }}

 \implies \boxed{ \rm{ \alpha   \times   \beta =  \dfrac{ c}{a}  }}

where ,

α and β = two zeroes of polynomials

a = coefficient of x²

b = coefficient of x

c = constant term

now applying formula for polynomial 2x²+3x+1

 \implies \rm{  \alpha  +  \beta  =  \dfrac{ - 3}{2}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (1)}

 \implies \rm{  \alpha   \times  \beta  =  \dfrac{ 1}{2}   \:  \:  \:  \:  \:  \:  \:  \:    \: \:  \: (2)}

now we have to find

\rm{ value \: of \: \dfrac{1}{ \alpha  } + \dfrac{1}{ \beta } }

solve it further :-

 \implies\rm{   \dfrac{1}{ \alpha } +  \dfrac{1}{ \beta } =   \dfrac{ \alpha +   \beta }{ \alpha    \times   \beta }   }

now put the value from eq 1 and eq 2

[tex] \implies \rm{ \dfrac{1}{ \alpha } + \dfrac{1}{ \beta } = \dfrac{ \dfrac{ - 3}{2} }{ \dfrac{1}{2} }}[/tex]

 \implies \rm{  \dfrac{1}{ \alpha } +  \dfrac{1}{ \beta } =   \dfrac{ - 3}{2} \times  \dfrac{2}{1}  }

 \implies \boxed{ \boxed{ \rm{  \dfrac{1}{ \alpha } +  \dfrac {1}{ \beta } =    - 3 }}}

Similar questions