Math, asked by bodhik9, 1 year ago

If alpha and beta are zeroes of the polynomial f(t) = t^2 - 4t + 3. Find the value of:

(i) alpha^4 beta^3 + beta^4 alpha^3
(ii) alpha/beta + beta/alpha

Answers

Answered by Anonymous
26

f(t) =  {t}^{2}  - 4t + 3 = 0 \\  \\  {t}^{2}  - (3 + 1)t + 3 = 0 \\  \\  {t}^{2}  - 3t - 1t + 3 = 0 \\  \\ t(t - 3) - 1(t - 3) = 0 \\  \\ (t - 1)(t - 3) = 0 \\  \\ t = 1 \: or \: t = 3 \\  \\  \alpha  = 1 \: and \:  \beta  = 3 \\  \\

1. \:  \alpha  {}^{4}  \times  \beta  {}^{4}  +  { \beta }^{4}  +  \alpha  {}^{3}  \\  \\  =  {1}^{4}  \times  {3}^{4}  +  {3}^{4}  \times 1 {}^{4}  \\  \\ 1 \times 81 + 81 \times 1 \\  \\ 81 + 81 = 162

2. \:  \frac{ \alpha }{ \beta }  +  \frac{ \beta }{ \alpha }  \\  \\  \frac{1}{4}  +  \frac{4}{1}  \\  \\  \frac{1 + 16}{4}  =  \frac{17}{4}

Answered by StarGazer001
27

 \mathfrak{Answer:-}

 \mathsf{f(t) =  {t}^{2}  - 4t + 3}

 \mathsf{f(t) =  {t}^{2}  - 4t + 3 = 0}

 \mathsf{{t}^{2}  - (3 + 1)t + 3 = 0}

 \mathsf{{t}^{2}  - 3t - 1t + 3 = 0}

 \mathsf{t(t - 3) - 1(t - 3)= 0}

 \mathsf{(t - 3) (t - 1)= 0}

 \mathsf{t - 3 = 0 , t - 1 = 0}

 \mathsf{t  = 3, t = 1}

 \mathfrak{ \alpha  = 1 \: and \:  \beta  = 4}

 \mathbf{1.  \: { \alpha }^{4}  \times  { \beta }^{3}  +  { \beta }^{4}  \times  { \alpha }^{3} }

 \mathbf{ =  {1}^{4}  \times  {3}^{4}  +  {3}^{4}  \times  {1}^{4} }

 \mathbf{ =  1  \times  81 +  81\times  1}

 \mathbf{ =  81 +  81}

 \mathbf{ = 162}

 \mathbf{ 2. \frac{ \alpha }{ \beta } +  \frac{ \beta }{ \alpha }}

 \mathbf{ =  \frac{1}{4}  +  \frac{4}{1}}

 \mathbf{ =  \frac{1 + 16}{4}}

 \mathbf{ =  \frac{17}{4}}

Similar questions