Math, asked by 9311445139, 1 year ago

If alpha and beta are zeroes of x2-5x + 6 then find the value of 1/alpha2 + 1/beta2

Answers

Answered by Steph0303
37
Hey mate !!

Here's your answer !!

Refer to the attachment !!

Hope it helps !!

Cheers !!
Attachments:
Answered by mysticd
23

Answer:

 \frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}=\frac{13}{36}

Step-by-step explanation:

 Given\: \alpha \:and\: \beta \\are\: zeroes\: of\: x^{2}-5x+6

Compare -5x+6 with ax²+bx+c , we get

a = 1 , b = -5 , c = 6

 i) Sum\: of \:the\: zeroes\\=\frac{-b}{a}

\implies \alpha+\beta = \frac{-(-5)}{1} \\=5 ---(1)

 ii) Product \:of\: the\: zeroes\\=\frac{c}{a}

\implies \alpha\beta = \frac{6}{1} \\=6---(2)

 iii) \alpha^{2}+\beta^{2}\\=(\alpha+\beta)^{2}-2\alpha\beta \\=5^{2}-2\times 6\\=25-12\\=13---(3)

Now, \\\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}\\=\frac{(\beta^{2}+\alpha^{2})}{(\alpha\beta)^{2}}

=\frac{13}{6^{2}}\\=\frac{13}{36}

Therefore,

 \frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}=\frac{13}{36}

•••♪

Similar questions