Math, asked by Adarssh000006, 1 year ago

if alpha and beta are zeros of polynomial 6 x square - 7 x minus 3, then form a quadratic polynomial whose zeros are 2 alpha and 2beta

Answers

Answered by Oishik11
131

6 {x}^{2}  - 7x - 3 \\  = 6 {x}^{2}  - 9x  + 2x - 3 \\  = 3x(2x - 3) + 1(2x - 3) \\  = (3x + 1)(2x - 3) \\ this \: implies \: x =  \frac{ - 1}{3} \:  or  \: \frac{3}{2}  \\ let  \:  \alpha  =  \frac{ - 1}{3}  \: and \:  \beta  =  \frac{3}{2}  \\ then \:   \\ 2 \times  \alpha  =  \frac{ - 2}{3}  \: and \: 2 \times  \beta  =  3 \\ now \: 2 \times  \alpha  + 2 \times  \beta  =  \frac{7}{9}   = sum\\ and \: 2 \times  \alpha  \times 2 \times  \beta  =  \frac{ - 2}{3}  \times 3 =  - 2 = product \\ we \: know \\ a \: quadratic \: equation \: is \: of \: the \: form \:  {x}^{2}  -  (sum ) \times x + (product) \\ therefore \: the \: equation \: is \\  {x}^{2}  - ( \frac{7}{9} ) \times x + ( - 2) =  {x}^{2} -  \frac{7x}{9}   - 2 \\  = 9 \times ( {x}^{2}  -  \frac{7x}{9}  - 2) = 9 {x}^{2}  - 7x - 18.
Answered by subbareddyborrpcv1z1
7

Answer:

Step-by-step explanation:

Attachments:
Similar questions