Math, asked by darshanpawar186, 11 months ago

if alpha and beta are zeros of polynomial f(x)=5x2 -7x+1 find the value of 1/alpha +1/beta​

Answers

Answered by sanjanashinevs
20

Answer:

(1/a +1/)

1/a +1/B= (a + B/ ab)

(a + B)=-b/a = 7/5

ab = c/a = 2/5

so, (a + B/ab (7/5) /(2/5)

7/2

So, 1/a +1/b = (a + B/ ab = 7/2

Hence, 1/a +1/b = 7/2

Answered by talasilavijaya
0

Answer:

The value of {1}/{\alpha}  +{1}/{\beta}=7.

Step-by-step explanation:

Given the polynomial f(x)=5x^2 -7x+1

\alpha  and \beta are the zeros of the polynomial.

Sum of the roots of a polynomial is given by,

\alpha +\beta=\dfrac{-b}{a}

Thus, the sum of the roots in the given polynomial is

\alpha +\beta=\dfrac{-(-7)}{5}=\dfrac{7}{5}                                                              ...(1)

Product of the roots of a polynomial is given by,

\alpha \beta=\dfrac{c}{a}

Thus, the product of the roots in the given polynomial is

\alpha\beta=\dfrac{1}{5}                                                                                 ...(2)

Product of the roots of a polynomial is given by,

Given to find the value of

\dfrac{1}{\alpha}  +\dfrac{1}{\beta} =\dfrac{\beta+\alpha}{\alpha\beta}

Substituting the values from equation (1) and (2),

\dfrac{\beta+\alpha}{\alpha\beta}=\dfrac{\dfrac{7}{5} }{\dfrac{1}{5} }

=\dfrac{7}{5} }\times {\dfrac{5}{1} }=7

Therefore, the value of {1}/{\alpha}  +{1}/{\beta}=7.

Similar questions