Math, asked by kavya1971, 2 months ago

if alpha and beta are zeros of polynomial f(x)=px2+qx+r then find (i)alpha2+beta2 (ii)alpha/beta+beta/alpha (iii)alpha3+beta3
Plz tell answer step by step...​

Answers

Answered by amansharma264
26

EXPLANATION.

α, β are the zeroes of the polynomial.

⇒ f(x) = px² + qx + r.

As we know that,

Sum of the zeroes of the quadratic equation.

⇒ α + β = -b/a.

⇒ α + β = -q/p. - - - - - (1).

Products of the zeroes of the quadratic equation.

⇒ αβ = c/a.

⇒ αβ = r/p. - - - - - (2).

To find :

(1) = α² + β².

As we know that,

Formula of :

⇒ (x² + y²) = (x + y)² - 2xy.

Using this formula in the equation, we get.

⇒ (α² + β²) = (α + β)² - 2αβ.

Put the value in the equation, we get.

⇒ (α² + β²) = (-q/p)² - 2(r/p).

⇒ (α² + β²) = q²/p² - 2r/p.

(α² + β²) = q² - 2pr/p².

(2) = α/β + β/α.

⇒ α/β + β/α = α² + β²/αβ.

⇒ α/β + β/α = [α + β]² - 2αβ/αβ.

⇒ α/β + β/α = [-q/p]² - 2(r/p)/(r/p).

⇒ α/β + β/α = [q²/p² - 2r/p]/(r/p).

⇒ α/β + β/α = [q² - 2pr/p²]/(r/p).

⇒ α/β + β/α = q² - 2pr/p² x p/r.

α/β + β/α = q² - 2pr/pr.

(3) = α³ + β³.

As we know that,

Formula of :

⇒ (x³ + y³) = (x + y)(x² + y² - xy).

⇒ (x³ + y³) = (x + y)[(x + y)² - 2xy - xy].

⇒ (x³ + y³) = (x + y)[(x + y)² - 3xy].

Using this formula in the equation, we get.

⇒ α³ + β³ = (α + β)[(α + β)² - 3αβ].

Put the value in the equation, we get.

⇒ α³ + β³ = (-q/p)[(-q/p)² - 3(r/p)].

⇒ α³ + β³ = (-q/p)[q²/p² - 3r/p].

⇒ α³ + β³ = (-q/p)[q² - 3pr/p²].

⇒ α³ + β³ = [-q³ + 3pqr]/p³.

α³ + β³ = 3pqr - q³/p³.


rsagnik437: Awesome ! :)
amansharma264: Thanku
Answered by Itzheartcracer
6

Given :-

f(x) = px² + qx + r

To Find :-

α² + β²

α/β + β/α

α³ + β³

Solution :-

Sum of zeroes = -b/a

Here

b = q

a = p

Sum = -(q)/p

Sum = -p/q

Now

Product of zeroes = c/a

Here

c = r

a = q

Product = r/q

1] α² + β²

(a² + b²) = (a + b)² - 2ab

(α² + β²) = (-q/p)² - 2(r/p)

(α² + β²) = (q²/p²) - 2 × r/p

(α² + β²) = q²/p² - 2r/p

(α² + β²) = q² - 2qr/p²

ii] α/β + β/α

α² + β²/αβ

(a² + b²) = (a + b)² - 2ab

(α + β)² - 2αβ/αβ

(-q/p)² - 2(r/p)/(r/p)

q²/p² - 2r/p/r/p

q² - 2pr/pr

iii]

(α³ + β³) = (α + β){(α + β)² - 3αβ}

(-q/p){(-q/p)² - 3(r/p)}

(-p/q) × {(q²/p²) - 3 × r/p)}

(-p/q) × {(q²/p²) - 3r/p)}

-p/q × q² - 3pr/p²

3pqr - q³/p³

Similar questions