if alpha and beta are zeros of polynomial p x = 2 X square + bx + c find the value of Alpha square minus beta square
Answers
SOLUTION ;
value is b^2 - 2ac/a^2
QUESTION ;
if alpha and beta are zeros of polynomial p x = 2 X square + bx + c find the value of Alpha square minus beta square
We know that alpha + beta = - b/a
(alpha)(beta) = c/a
And , (a + b)^2 = a^2 + 2ab + b^2 ..........equ (1)
Also , (a -b) ^2 = a^2 - 2ab + b^2 .........equ(2)
that implies ; a^2 + b^2 = (a -b)^2 + 2ab ......equ(3)
substitute equ (3) in equ (1)
we get , (a+ b )^2 = (a-b)^2 + 2ab
or, (a-b)^2 = (a+b)^2 - 2ab
substitute alpha and beta in place of 'a' and 'b' .
(alpha - beta)^2 = (alpha + beta )^2 - 2(alpha )(beta)
alpha + beta = - b/a
(alpha)(beta) = c/a
polynomial = 2x^2 + bx + c
b = b
a = 2
c= c
substitute (alpha - beta)^2 = (alpha + beta )^2 - 2(alpha )(beta)
(alpha - beta)^2 = (-b/a)^2 - 2c/a
= b^2/a^2 - 2c/a
or, b^2 - 2ac/a^2