If alpha and beta are zeros of the given polynomial p(x)= 6x^2+x-2,then find there value if alpha/beta+ beta/alpha
Answers
If u find answer helpful mark as brainlist
Answer:
The value of ( α / β ) + ( β / α ) is - 25 / 12.
Step-by-step-explanation:
The given quadratic polynomial is 6x² + x - 2.
We have given that,
α and β are the zeros of quadratic polynomial.
Comparing the quadratic polynomial with ax² + bx + c, we get,
- a = 6
- b = 1
- c = - 2
We know that,
Sum of zeros = - b / a
⇒ α + β = - 1 / 6
And,
Product of zeros = c / a
⇒ αβ = - 2 / 6
⇒ αβ = - 1 / 3
Now,
( α / β ) + ( β / α ) = ( α² + β² ) / ( αβ )
We know that,
( α + β )² = α² + 2αβ + β²
∴ α² + β² = ( α + β )² - 2αβ
⇒ ( α / β ) + ( β / α ) = [ ( - 1 / 6 )² - 2 * ( - 1 / 3 ) ] / ( - 1 / 3 )
⇒ ( α / β ) + ( β / α ) = [ ( 1 / 36 ) + ( 2 / 3 ) ] / ( - 1 / 3 )
⇒ ( α / β ) + ( β / α ) = [ ( 3 + 72 ) / ( 36 * 3 ) ] / ( - 1 / 3 )
⇒ ( α / β ) + ( β / α ) = [ 75 / ( 36 * 3 ) ] / ( - 1 / 3 )
⇒( α / β ) + ( β / α ) = - 75 / ( 36 * 3 ) * 3
⇒ ( α / β ) + ( β / α ) = - 75 / 36
⇒ ( α / β ) + ( β / α ) = - 25 / 12
∴ The value of ( α / β ) + ( β / α ) is - 25 / 12.