Math, asked by rupamborpatragohain0, 11 months ago

if alpha and beta are zeros of the polynomial x square + 8x+6 from the polynomial whose zeros are (alpha+beta divided by alpha) + (alpha + beta divided by beta)​

Answers

Answered by tarunmandalcrj12
1

Answer:p(x)= x²+8x+6

Here, a = 1, b = 8, c = 6

∵ ∝ and β are the zeroes of the polynomial

∴ we know,

∝ =  \frac{-b}{a} = -8 and β =  \frac{c}{a} = 6

given  , \frac{\alpha +\beta }{\alpha } and  \frac{\alpha+\beta  }{\beta } are the zeroes of the required polynomial

Now,

⇒ Sum of zeros = \frac{\alpha +\beta }{\alpha }+\frac{\alpha +\beta}{\beta }

                            =  \frac{(-8)+6}{-8} +\frac{-8+6}{6}

                            = \frac{-2}{-8} +\frac{-2}{6}

                            = \frac{1}{4} +\frac{-1}{3}

                            = \frac{3-4}{12}  

                            = \frac{-1}{12}

product = \frac{\alpha +\beta }{\alpha }*\frac{\alpha +\beta}{\beta }

              =\frac{(-8)+6}{-8} *\frac{-8+6}{6}

              =\frac{-2}{-8} *\frac{-2}{6}

              =\frac{4}{48}

              =\frac{1}{12}

Required polynomial = k[x^{2} -\frac{-1}{12}x+ \frac{1}{12}]

= k[\frac{12x^{2}+x+12 }{12} ]  

now, if  k = 12

∴ Required polynomial = 12x² + x + 12

Step-by-step explanation:

Similar questions