if alpha and beta are zeros of the quadratic polynomial f(x)=x^2-3x-2,find a polynomial whose zeroes are 1)2alpha+3beta and 3alpha+2 beta 2)alpha^2/beta and beta^2/alpha
Answers
Answered by
4
Answer:
(a)x²-15x+22 (b)x²-16x-2
Step-by-step explanation:
f(x)=x^2-3x-2,
αβ=-2,α+β=3
(1) The polynomial
=x²-(2α+3β+3α+2β)x+(2α+3β)(3α+2β)
=x²-5(α+β)x+6α²+4αβ+6αβ+6β²
=x²-5(α+β)x+6α²+10αβ+6β²
=x²-5*3x+6(α²+β²+2αβ)-2αβ
=x²-15x+6(α+β)²-2αβ
=x²-15x+6*3-2*-2
=x²-15x+18+4
=x²-15x+22
=====================================================
(2) Zeros are α²/β and β²/α
g(x)=x²-(α²/β+ β²/α)x + α²/β* β²/α
x²-1/αβ(α³+ β³)x+αβ
=x²-1/αβ[ (α+β)(α²+β²-αβ)]x+αβ
=x²-1/αβ[(α+β){ (α+β)²-3αβ} ]+αβ
=x²-1/-2 [-2*(3²-3*(-2)]x+(-2)
=x²+1/2 [-2*(9+7)]x-2
=x²-16x-2
aditya823921:
ok
Similar questions