Math, asked by vraj9062, 11 months ago

if alpha and beta are zeros of x square - 5 x + 6 then find 3 upon 4 × *(Alpha square minus beta square)​

Answers

Answered by sanjeevk28012
0

The value of   \dfrac{3}{4} × ( α²  -  β² ) is \dfrac{15}{4}

Step-by-step explanation:

Given as :

The quadratic equation is   x² - 5 x + 6 = 0

The roots of this equation are  α  ,  β

Let The value of  \dfrac{3}{4} × ( α²  -  β² ) =  k

According to question

For standard quadratic equation   ax² + b x + c = 0

The sum of roots = α + β = \dfrac{-b}{a}

The product of roots = α × β  = \dfrac{c}{a}

Now, compare standard equation with given quadratic equation

So,   α + β = \dfrac{-(-5)}{1}  = 5

The value of  α + β = 5

And  α × β  =  \dfrac{6}{1}  = 6

The value of   α × β = 6

Again

 ( α - β )²  =  ( α + β )² - 4 α × β

                =  (5 )² - 4 × 6

               = 25 - 24

               = 1

So, The value of α - β = 1

Now, A/Q

The value of   \dfrac{3}{4} ( α²  -  β² ) =  k

Solving this equation

            k =  \dfrac{3}{4} × [ ( α -  β )  ( α +  β ) ]

Or,        k = \dfrac{3}{4} × [ ( 1 ) × ( 5 ) ]

Or,        k = \dfrac{3}{4} × 5

∴           k = \dfrac{15}{4}

So, The value of   \dfrac{3}{4} ( α²  -  β² ) =  k = \dfrac{15}{4}

Hence,  The value of   \dfrac{3}{4} × ( α²  -  β² ) is \dfrac{15}{4}   Answer

Similar questions