Math, asked by mahin1198, 1 year ago

if alpha and beta be the zeros of polynomial 2 X square + 5 x + K such that Alpha square + beta square + alpha beta is equal to 21 upon 4 then K is equal to​

Attachments:

arc555: hey sorry it is not correct.
arc555: This question confused me
arc555: so ask the moderator to delete this

Answers

Answered by arc555
0

putting \: values \: \\  \\   ( \frac{ - 5 -  \sqrt{25 - 8k} }{4} ) {}^{2}  +  ({ \frac{ - 5 +  \sqrt{25 - 8k} }{4} })^{2}  + ( \frac{ - 5 -  \sqrt{25 - 8k} }{4}  )\times  \frac{ - 5 +  \sqrt{25 - 8k} }{4}  =  \frac{21}{4}

We know that

( {x + y})^{2}  + ( {x - y})^{2}  = 2 {x}^{2}  + 2 {y}^{2}

 =  >  { \alpha }^{2}  +   { \beta }^{2}  =2(  \frac{25 - 25 + 8k}{16} )

 =  >  { \alpha  }^{2}  +  { \beta }^{2}  =  \frac{2 \times 8k}{16}  = k

Again

 \alpha  \beta  =  \frac{25 - 25 + 8k}{16}  \\  \\  =  >  \alpha  \beta  =  \frac{k}{2}

 =  >  { \alpha }^{2}  +  { \beta }^{2}  + \alpha  \beta  = k +  \frac{k}{2}  =  \frac{21}{4} \\  \\ k +  \frac{k}{2}  =  \frac{21}{4}  \\  \\  =  >  \frac{2k + k}{2}  =  \frac{21}{4}

 =  >  \frac{3k}{2}  =  \frac{21}{4}

 =  > k =  \frac{21}{4}  \times  \frac{2}{3}  \\  \\  =  > k =  \frac{7}{2}

Attachments:
Similar questions