if alpha and beta lie in first quadrant and sin alpha= 8/17 , tan beta = 5/12 , find the value of sin ( alpha - beta) , cos ( alpha - beta ) and tan ( alpha - beta k
Answers
Given :-
Alpha ( α ) and Beta ( β ) lie in first quadrant.
◐ sin α = 8/17
◐ tan β = 5/12
To Find :-
- sin ( α - β )
- cos ( α - β )
- tan ( α - β )
Solution :-
Here, we know
→ sin θ = opposite/hypotenuse
→ cos θ = adjacent/hypotenuse
→ tan θ = opposite/adjacent
Let, α and β be the angles of Δ ABC and Δ abc respectively.
Now from given for Δ ABC
→ sin α = 8/17
Hence, opposite = 8 and hypotenuse = 17
so we need to find adjacent
Here we use Pythagoras theorem
→ (hypotenuse)² = (opposite)² + (adjacent)²
→ (17)² = (8)² + (adjacent)²
→ 289 = 64 + (adjacent)²
→ 289 - 64 = (adjacent)²
→ 225 = (adjacent)² i.e.
→ (adjacent)² = 225
→ adjacent = √225
→ adjacent = 15
Now from given for Δ abc
→ tan β = 5/12
Hence, opposite = 5 and adjacent = 12
so we need to find hypotenuse
Here we use Pythagoras theorem
→ (hypotenuse)² = (opposite)² + (adjacent)²
→ (hypotenuse)² = (5)² + (12)²
→ (hypotenuse)² = 25 + 144
→ (hypotenuse)² = 169
→ hypotenuse = √169
→ hypotenuse = 13
Now, for Δ ABC
→ sin α = 8/17
→ cos α = 15/17
→ tan α = 8/15
Now, for Δ abc
→ sin β = 5/13
→ cos β = 12/13
→ tan β = 5/12
Now,
→ sin ( α - β ) = sin α × cos β - cos α × sin β
→ sin ( α - β ) = 8/17 × 12/13 - 15/17 × 5/13
→ sin ( α - β ) = 96/221 - 75/221
→ sin ( α - β ) = 21/221 or 0.095
→ cos ( α - β ) = cos α × cos β + sin α × sin β
→ cos ( α - β ) = 15/17 × 12/13 + 8/17 × 5/13
→ cos ( α - β ) = 180/221 + 40/221
→ cos ( α - β ) = 220/221 or 0.995
→ tan ( α - β ) = tan α - tan β / 1 + tan α × tan β
→ tan ( α - β ) = 8/15 - 5/12 / 1 + 8/15 × 5/12
→ tan ( α - β ) = 96/180 - 75/180 / 1 + 8/15 × 5/12
→ tan ( α - β ) =21/180 / 1 + 40/180
→ tan ( α - β ) = 21/180 / 220/180
→ tan ( α - β ) = 21/220 or 0.095
Hence,
- sin ( α - β ) = 21/221
- cos ( α - β ) = 220/221
- tan ( α - β ) = 21/220