Math, asked by TheMySteRyQueEn, 1 year ago

If alpha and beta r zero of the polynomial f(x)=kx²+4x+4 such that alpha²+ beta²=24. Find the required value of k.





Don't spam❎❎

Answers

Answered by Anonymous
12

f(x) = kx^2 + 4x +4

alpha + beta = -4/k

alpha × beta = 4/k

alpha^2 + beta^2 = 24

( alpha+ beta)^2 - 2 ( alpha)( beta) = 24

16/k^2 - 8/k - 24 = 0

3k^2 + k - 2 = 0

3k^2 + 3k -2k -2 = 0

3k ( k +1) -2( k +1) = 0

( 3k -2)( k +1)= 0

k= 2/3, -1

Answered by Anonymous
36

Solution:

Let \bold{\alpha}and \bold{\beta}be the zeros of the quadratic polynomial.

We know that a quadratic polynomial is of the form ax²+bx+c.

f(x)= kx²+4x+4

   {\star}{\boxed{ \bold{ \underline{ \alpha +  \beta =  \frac{ - 4}{k} }}}}

and,

 \star  \boxed{ \bold{ \underline{\alpha \beta =  \frac{4}{k} }}}

Now,

 \boxed{ \bold{  \underline{\alpha {}^{2}  +  \beta {}^{2}  = 24}}}

 \bold { \implies (  \alpha +  \beta ) {}^{2}  - 2 \alpha  \beta  = 24}

 \bold{ \implies( \frac{ - 4}{k} ) {}^{2}  - 2 \times  \frac{4}{k}  = 24}

 \bold {\implies \frac{16}{k {}^{2} } -  \frac{8}{k} = 24  }

 \bold{ \implies \: 16 - 8k = 24k {}^{2} }

 \bold{ \implies \: 3k {}^{2} + k - 2 = 0 }

 \bold { \implies3k {}^{2}  + 3k - 2k - 2 = 0}

 \bold{ \implies3k(k + 1) - 2(k + 1 = 0)}

 \bold{ \implies \:( k + 1)(3 k- 2) = 0}

  \boxed{\bold{  \implies \: k + 1 = 0 \: \:  \:or \:  \: 3k - 2 = 0}}

  \huge{ \purple \star}{\boxed{ \red{ \mathfrak{ \underline {k =  - 1 \:  \: or \:  \: k =  \frac{ 2}{3} }}}}}

Similar questions