Math, asked by Danduashok, 2 months ago

if alpha and Beth's are the roots of the equation x^2+3x+2=0 then alpha^5+betta^5​

Answers

Answered by 12thpáìn
274

Given f(x) +3x+2= 0

To Find

  •  \sf { \alpha }^{5}  +  { \beta }^{5}

Solution

\\\\{ \sf \: f(x) \implies x²+3x+2= 0}  \  \\  \\ \ { \sf  \implies x²+2x + x+2= 0}  \\  \\ { \sf \:  \:    \:\implies  x(x+2 )+1( x+2)= 0}   \\  \\  { \sf \:  \:  \:  \: \implies (x + 1)(x + 2)= 0~~~~~~~~~~~}  \\  \\  \\

\\ Let   \\  \:  \alpha  =  - 1 \:  \:  \: and \:  \:  \:  \beta  =  - 2 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\\ \sf{Now  \: to  \: find  \: the \:  value \:  of   \: { \alpha }^{5}  +  { \beta }^{5} }

 \sf{\rightsquigarrow \alpha }^{5}  +  { \beta }^{5}  =  {( - 1)}^{5}  +  {( - 2)}^{5}

{\rightsquigarrow \alpha }^{5}  +  { \beta }^{5} =  { - 1   - 32 }

{\rightsquigarrow\sf  \alpha }^{5}  +  { \beta }^{5} =  \bf{ - 33 } \\  \\  \\

Similar questions