Math, asked by anpm197976, 2 months ago

If alpha and bita are the zeroes of the polynomial 3x^2+ 2x +3, then find 1/alpha square + 1/bita square
plz ans fast!!​

Answers

Answered by NewGeneEinstein
54

Step-by-step explanation:

Given:-

\sf \alpha\:and\:\beta\:are\;zeros\:of\:the\;polynomial\:3x^2+2x+3=0

To find:-

\sf \dfrac{1}{\alpha^2}+\dfrac{1}{\beta^2}

Solution:-

Here

  • a=3
  • b=2
  • c=3

\boxed{\sf \alpha+\beta=\dfrac{-b}{a}}

\\ \tt{:}\longrightarrow \dfrac{-2}{3}

And

\boxed{\sf \alpha\beta=\dfrac{c}{a}}

\\ \tt{:}\longrightarrow \dfrac{3}{3}

\\ \tt{:}\longrightarrow 1

Now

\\ \tt{:}\longrightarrow \dfrac{1}{\alpha^2}+\dfrac{1}{\beta^2}

\\ \tt{:}\longrightarrow \dfrac{\alpha^2+\beta^2}{\alpha^2\beta^2}

\\ \tt{:}\longrightarrow \dfrac{(\alpha+\beta)^2-2\alpha\beta}{(\alpha\beta)^2}

\\ \tt{:}\longrightarrow \dfrac{\left(\dfrac{-2}{3}\right)^2-2(1)}{(1)^2}

\\ \tt{:}\longrightarrow \dfrac{\dfrac{4}{9}-2}{1}

\\ \tt{:}\longrightarrow \dfrac{\dfrac{4-18}{9}}{1}

\\ \tt{:}\longrightarrow \dfrac{-14}{9}

\\ \\ \therefore\sf \dfrac{1}{\boldsymbol{\alpha}^2}+\dfrac{1}{\boldsymbol{\beta}^2}=\dfrac{-14}{9}

Answered by kailashmannem
105

 \Large{\bf{\green{\mathfrak{\dag{\underline{\underline{Given:-}}}}}}}

  •  \alpha and  \beta are the zeroes of the polynomial 3x² + 2x + 3.

 \Large{\bf{\orange{\mathfrak{\dag{\underline{\underline{To \: Find:-}}}}}}}

  •  \sf \dfrac{1}{{\alpha}^{2}} \: + \: \dfrac{1}{{\beta}^{2}}

\Large{\bf{\red{\mathfrak{\dag{\underline{\underline{Solution:-}}}}}}}

First,

  • Polynomial = 3x² + 2x + 3

We know that,

  •  \boxed{\pink{\sf \alpha \: + \: \beta \: = \: \dfrac{- \: b}{a}}}

  •  \boxed{\pink{\sf \alpha \beta \: = \: \dfrac{c}{a}}}

Now,

  • In 3x² + 2x + 3,

  • a = + 3

  • b = + 2

  • c = + 3

Then,

  •  \sf \alpha \: + \: \beta \: = \: \dfrac{- \: b}{a} \: = \: \dfrac{- \: 2}{3}

  •  \sf \alpha \beta \: = \: \dfrac{c}{a} \: = \: \dfrac{3}{3} \: = \: 1

Now,

  •  \sf \dfrac{1}{{\alpha}^{2}} \: + \: \dfrac{1}{{\beta}^{2}}

Taking LCM,

  •  \sf \dfrac{{\alpha}^{2} \: + \: {\beta}^{2}}{{\alpha}^{2} {\beta}^{2}}

We know that,

  •  \boxed{\pink{\sf {\alpha}^{2} \: + \: {\beta}^{2} \: = \: (\alpha \: + \: \beta)^2 \: - \: 2 \alpha \beta}}

  •  \boxed{\pink{\sf {\alpha}^{2} {\beta}^{2} \: = \: (\alpha \beta)^2}}

Re-writing,

  •  \sf \dfrac{(\alpha \: + \: \beta)^2 \: - \: 2 \alpha \beta}{(\alpha \beta)^2}

Here,

  •  \sf \alpha \: + \: \beta \: = \: \dfrac{- \: 2}{3}

  •  \sf \alpha \beta \: = \: \dfrac{3}{3} \: = \: 1

Substituting the values,

  •  \sf \dfrac{\bigg(\dfrac{- \: 2}{3}\bigg)^2 \: - \: 2 \: * \: 1}{(1)^2}

  •  \sf \dfrac{\bigg(\dfrac{- \: 2}{3}\bigg)^2 \: - \: 2}{1}

  •  \sf \bigg(\dfrac{- \: 2}{3}\bigg)^2 \: - \: 2

  •  \sf \dfrac{4}{9} \: - \: 2

  •  \sf \dfrac{4}{9} \: - \: \dfrac{18}{9}

  •  \sf \dfrac{4 \: - \: 18}{9}

  •  \sf \dfrac{- \: 14}{9}

Therefore,

  •  \boxed{\purple{\sf \dfrac{1}{{\alpha}^{2}} \: + \: \dfrac{1}{{\beta}^{2}} \: = \: \dfrac{- \: 14}{9}}}

\Large{\bf{\blue{\mathfrak{\dag{\underline{\underline{Extra \: Information:-}}}}}}}

  • Any Quadratic polynomial is of the form ax² + bx + c where a and b simultaneously cannot be equal to 0.

  • If  \alpha and  \beta are the zeroes of a quadratic polynomial then,

  •  \sf \alpha \: + \: \beta \: = \: \dfrac{- \: b}{a}

  •  \sf \alpha \beta \: = \: \dfrac{c}{a}
Similar questions