Math, asked by naughtyboy6958, 1 year ago

if alpha and bita are the zeroes of the polynomial 3x^2+2x-6 , then find the value of alpha/bita + bita/alpha​

Answers

Answered by ihrishi
3

Step-by-step explanation:

Given quadratic polynomial is:

3 {x}^{2}  + 2x - 6 \\ equating \: it \: with \\ a {x}^{2}  + bx  + c \: we \: find :   \\ a = 3 \\ b = 2 \\ c =  - 6 \\  \because \:  \alpha   \: and \:  \beta  \: are \: zeros \: of \: polynomial \\ hence \\ sum \: of \: zeros \\  \alpha  +  \beta  =   - \frac{b}{a}  =  -  \frac{2}{3}  \\ product \: of \: zeros \\  \alpha  \beta  =  \frac{c}{a}  =  \frac{ - 6}{3}  =  - 2 \\ now \: we \: need \: to \: find :  \\  \frac{ \alpha }{ \beta } +  \frac{ \beta }{ \alpha }   \\ thus \\  \frac{ \alpha }{ \beta } +  \frac{ \beta }{ \alpha }   =  \frac{ { \alpha }^{2} +  { \beta }^{2}  }{ \alpha  \beta }  =  \frac{( \alpha  +  \beta )^{2} - 2 \alpha  \beta  }{ \alpha  \beta }  \\  =  \frac{ ( - \frac{2}{3})^{2}  - 2( - 2) }{ - 2} \\  =  \frac{  \frac{4}{9}   + 4  }{ - 2}  =  \frac{ \frac{4 + 9 \times 4}{9} }{2}  \\ =  \frac{ \frac{4 + 36}{9} }{ - 2} \\ =  \frac{ 40}{ - 2 \times 9}  \\  =  -  \frac{20}{9}  \\  \therefore \:   \frac{ \alpha }{ \beta } +  \frac{ \beta }{ \alpha }  =  -  \frac{20}{9} \\

Similar questions