If alpha and bita are zeroes of the polynomial x²-5x+3 find the value alpha³ +bita³
Answers
Answered by
0
Step-by-step explanation:
Given:
x2+5x+3=0x2+5x+3=0
The roots of the equation are :α:αandββ
α+β=−baα+β=−ba
⟹α+β=−5……..(1)⟹α+β=−5……..(1)
α∗β=caα∗β=ca
⟹α∗β=3……….(2)⟹α∗β=3……….(2)
(α+β)2=α2+β2+2α∗β(α+β)2=α2+β2+2α∗β
⟹(−5)2=α2+β2+2∗3[See(1) and (2)]⟹(−5)2=α2+β2+2∗3[See(1) and (2)]
⟹α2+β2=25–6⟹α2+β2=25–6
⟹α2+β2=19………(3)⟹α2+β2=19………(3)
Now,(α−β)2=α2+β2–2α⋅βNow,(α−β)2=α2+β2–2α⋅β
⟹(α−β)2=19–6
Similar questions