Math, asked by shardakadam, 11 months ago

if alpha and bita are zeros of the quadratic polynomial p(x)=ax^2+bx+c, then evaluate alpha by bita + bita by alpha

Answers

Answered by bsjaura22
1

Answer:

that is tge answer dear

Attachments:
Answered by Anonymous
116

\bold{\huge{\underline{\underline{\rm{ Given :}}}}}

 \alpha  \: and \:  \beta  \: are  \: the \: zeros \: of  \\ \: polynomial \:  a {x}^{2}  + bx + c

\bold{\huge{\underline{\underline{\rm{ To\:Find :}}}}}

 \frac{ \alpha }{ \beta }  +  \frac{ \beta }{ \alpha }

\rule{200}{1}

Solution :-

We know that :-

  • sum \: of \: zeros \:  =  -  \frac{coefficient \: of \: x}{coefficient \: of \:  {x}^{2} }
  • product \: of \: zeros =  \frac{contant \: term}{coefficient \: of \:  {x}^{2} }

In the given polynomial :-

Coefficient of = a

Coefficient of x = b

constant term = c

So,

 \alpha  +  \beta  =  -  \frac{b}{a}

 \alpha  \beta  =  \frac{c}{a}

Now come to The question :-

 \frac{ \alpha }{ \beta }  +  \frac{ \beta }{ \alpha }  \\  \\  =  \frac{ { \alpha }^{2}  +  { \beta }^{2} }{ \alpha  \beta }

Using the identity :-

 {x}^{2}  +  {y}^{2}  = ( {x + y)}^{2}  - 2xy

 =  \frac{( { \alpha  +  \beta )}^{2}  - 2 \alpha  \beta }{ \alpha  \beta }

Substituting the values of

 \alpha  +  \beta  \: and \:  \alpha  \beta

 =  \frac{(  - \frac{ {b} }{a})^{2}  - 2 \times  \frac{c}{a} }{ \frac{c}{a} }  \\  \\  =  \frac{ \frac{ {b}^{2} }{ {a}^{2} }  -  \frac{2c}{a} }{ \frac{c}{a} }  \\  \\  =  \frac{ \frac{ {b}^{2}  - 2ac}{ {a}^{2} } }{ \frac{c}{a} }  \\  \\  =  \frac{ {b}^{2}  - 2ac}{ {a}^{2} }  \times  \frac{a}{c}  \\  \\  =  \frac{ {b}^{2}  - 2ac}{ac}

\rule{200}{1}

Similar questions