Math, asked by parveenkainat34, 23 days ago

if alpha be a root of the equation ax²+bx+c=0,show that k alpha (k!=0) is a root of the equation ax²+box+ck²=0.

please solve this as soon as possible ​

Answers

Answered by XxsinglequeenxX28
7

x =  \frac{ - b   +  \sqrt{} ^{} {b}^{2} - 4ac }{2a}

d =  \frac{ - b +  \sqrt{b  {}^{2} - 4ac  } }{2a}

ax {}^{2}  + bkx +  {ck}^{2}  = 0

x =  \frac{ - bk +  \sqrt{ {b}^{2} {k}^{2}  }  - 4ac {}^{2} }{2a}

x =  \frac{ - bk + x \sqrt{b}  {}^{2}   - 4ac}{2a}

x = k \frac{( - b +  \sqrt{b}   {}^{2}  - 4ac}{2a}

 \frac{k( - b +  \sqrt{b {}^{2 }4ac) } }{2a} or \:  \frac{k( - b -  \sqrt{ {b}^{2}  - 4ac)} }{2a}

Similar questions